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Summary 
  
 A non-compactly supported cubic radial basis function implementation of the MLPG method for 
beam problems is presented.  The evaluation of the derivatives of the shape functions obtained from the 
radial basis function interpolation is much simpler than the evaluation of the moving least squares shape 
function derivatives.  The radial basis MLPG yields results as accurate or better than those obtained by 
the conventional MLPG method for problems with discontinuous and other complex loading 
conditions. 
 

Introduction 
  
 Meshless methods are attractive as they overcome some of the disadvantages of the finite element 
method (FEM) such as discontinuous secondary variables across inter-element boundaries and the need 
for remeshing in large deformation problems [1-4].  Recent literature shows extensive research on 
meshless methods and, in particular, the meshless local Petrov-Galerkin (MLPG) method.  Atluri, Cho, 
and Kim [4] present an analysis of thin beam problems using a Galerkin implementation of the MLPG 
method;  a generalized moving least squares (GMLS) approximation is used to construct the trial 
functions, and the test functions are chosen from the same space.  In references 5-7, a meshless Petrov-
Galerkin implementation of the MLPG method is presented; the GMLS approximation is used to 
construct the trial functions, and the test functions are chosen from a different space.  Closer scrutiny of 
these formulations shows that a large number of calculations are required to compute the first and 
second order derivatives of the moving least squares (MLS) trial functions that are required in the weak 
form.  Hence, a computationally efficient alternative to the MLS trial functions is preferred. 
 
 In reference 8, the use of radial basis interpolation functions in the meshless local Petrov-Galerkin 
formulation for beam problems is explored.  Both compactly and non-compactly supported radial basis 
functions (RBF) are considered.  In addition, the RBFs are augmented with polynomial terms to 
increase the polynomial accuracy of the solutions.  The resulting interpolation functions are simple, and 
the evaluation of the derivatives is simpler than for the traditional MLS approximations. 
 
 The purpose of this paper is to investigate the use of a non-compactly supported cubic radial basis 
function in the MLPG (RPG) method for beam problems.  The method is evaluated by applying the 
formulation to patch test and mixed boundary value problems and problems with complex loading 
conditions. 
 

Development of the Petrov-Galerkin Formulation 
  
 The notation of reference 8 is used in this paper for brevity and convenience in presentation.  The 
MLPG equations are 
 
 , (1) 0ffdKdK =−−+ (bdry)(node)(bdry)(node)
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where the superscript “bdry” denotes boundary, 
 
 , (2) { NNwww θθθ K2211
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are the nodal values of deflections, w, and slopes, θ, at the N nodes of the model used to analyze the 
problem, and the matrices in Equation (1) are defined as in Equations (80b) – (80g) of reference 8.  The 
radial basis functions used in this work possess the δij property; therefore, the dT values in Equation (2) 
are actual nodal values rather than fictitious nodal values. 
 
 In the MLPG implementation, the trial functions used for beam problems are 
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where  and  are the shape functions for deflection and slope, respectively.  In this 

work, the shape functions are derived using radial basis interpolations and are 
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where Rk(x) are the radial basis functions, 
 
 , (5) dxxdRxS kk /)()( =
 
and ηij are the elements of [QB]-1, where 
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The derivatives of the trial functions are easy to evaluate directly from Equation (4).  These derivatives 
are much simpler than the derivatives of the MLS trial functions, which involve numerous matrix 
inversion and multiplication operations (see references 1-7). 
 
 In this work, the radial basis function considered is the non-compactly supported cubic RBF [9], 
 
 , with 3)( rxRk = jj sd=r , (7) 

 
where dj = ||x – xj||, and sj is some normalizing distance, usually chosen to be the entire problem domain, 
Ω (in this work, ).  As sLx ≤≤0 j covers the entire problem domain, [QB] is a (2N, 2N) matrix that is 
evaluated and inverted once.  As a result, the current RPG method involves two inversions of large 
matrices ([QB]-1 to obtain the shape functions, and [K] -1 to obtain the solution), in contrast to the 
conventional MLPG method, which involves the inversion of many smaller matrices to obtain the shape 
functions and their derivatives and the inversion of the large [K] matrix to obtain the solution.  Because 
of this difference, the RPG method may not be more computationally efficient than the MLPG method 
for large models. 
 
 The test function, v, is assumed as in references 7 and 8 as 
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In this paper, the test function components, , are chosen as in the conventional MLPG method as 
power weight functions [7], 

iχ
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with di = ||x – xi||.  In Equation (9), so is a user-defined parameter that determines the extent of the test 
functions.  The components of the test functions chosen for θ are the first derivatives of the components 
of the test functions chosen for the primary variable, w, as θ = (dw/dx) is also a primary variable: 
 
 dxd w

ii
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 For this power function, the values of , , , and  are zero when 

.  As discussed in reference 7, when this test function is used, the K

)(w
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oi sd ≥ (node) (Equation (1)) is 
simplified (see Equation (41) of reference 7). 
 

Beam Configurations and Models 
  
 A beam of constant flexural rigidity EI and a length of 4l is considered.  The length 4l is 
specifically chosen to avoid scaling by a unit length, l.  Five models with 5, 9, 17, 33, and 65 nodes 
uniformly distributed along the length of the beam are considered.  Figure 1 shows a typical 17-node 
model.  The distances between the nodes (∆x / l) in these models are 1, 0.5, 0.25, 0.125, and 0.0625 for 
the 5-, 9-, 17-, 33-, and 65-node models, respectively. 
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Figure 1: A 17-node model of the beam 

 
Numerical Evaluations - Patch Tests 

 
 The radial basis MLPG (RPG) method was evaluated by applying the method to simple patch-test 
problems.  The problems considered were (a) rigid body translation, (b) rigid body rotation, and (c) 
constant-curvature condition: 
 
 , (11a)  dw/dxθxw 0            ,)( 0 === β
 
 , (11b) 11           ,)( βθβ == xxw
 
 , (11c) x/xxw 2 2
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where β0, β 1, and β 2 are arbitrary constants.  The third patch test is equivalent to the problem of a 
cantilever beam with a moment, M=EI(d 2w/dx2)= EIβ2, applied at x=4l.  The deflection, w, and the 
slope, θ, corresponding to problems (a), (b), and (c) were prescribed as essential boundary conditions 
(EBCs) at x=0 and x=4l.  With these EBCs, the beam problems were analyzed using the RPG method.  
If the RPG method recovers the exact solution at all the interior nodes and at every arbitrary point of the 
beam, then the method passes the patch test.  For all models considered, the method successfully 
reproduced the exact solutions to machine accuracy, thus passing all the patch tests. 
 

Mixed Boundary Value Problems 
 
 Next, the RPG method was used to analyze mixed boundary value problems.  The two problems 
considered were a cantilever beam with a tip load and a simply supported (SS) beam subjected to a 
uniformly distributed load (UDL).  In the method, a 12-point Gaussian integration was used to integrate 
the weak form, the value of (so / l), which defines the extent of the test functions (see Equation (9)), was 
set as (so / l =2∆x / l), and the value of (sj / l), which defines the extent of the trial functions (Equation 
(7)), was set as (sj / l = L / l = 4).  For the cantilever beam problem, the RPG method yielded excellent 
results.  The simply supported beam with a uniformly distributed load was analyzed using 17-, 33-, and 
65-node models.  The maximum deflection values, i.e., the deflection at (x = L / 2), for these three 
models obtained using the RPG method and using the conventional MLPG method with a quadratic 
polynomial basis function are compared in Table 1.  In the MLPG method, a 20-point Gaussian 
integration was used, the value of (so / l) was set as (so / l =2∆x / l), and the value of (sj / l) was set as    
(sj / l =8∆x / l).  From this table, it is seen that the RPG method performs as accurately as the 
conventional MLPG method.  For each of the nodal models (17, 33, and 65 nodes), the RPG values for 
slope and moment are as accurate as the MLPG values and are in excellent agreement with the exact 
values, and the RPG values for shear converged with model refinement.  The MLPG solution for the 
shear was erratic; the quadratic basis function is insufficient to accurately calculate the third derivatives 
for this problem, and the method could not recover the values with model refinement.  The solution for 



the shear converged only as the order of the basis function was increased to quartic [6].  The results 
discussed for this problem verify a perceived advantage of the RPG method over the MLPG method; 
namely, accurate solutions are obtained with easier evaluation of the shape function derivatives. 
 
Table 1: Comparison of maximum deflection for the SS beam with UDL 

Maximum deflection (at x = L / 2)  
Model Exact RPG MLPG 

17-node -3.3333e-7 -3.2739e-7 -3.3106e-7 
33-node -3.3333e-7 -3.3407e-7 -3.3735e-7 
65-node -3.3333e-7 -3.3420e-7 -3.3848e-7 

 
Problems with Complex Loading Conditions 

 
 The RPG method was next applied to problems with complex loading conditions.  The problems 
considered were (a) a cantilever beam with a uniformly distributed load on a portion of the beam (not 
shown here, see reference 8), (b) a continuous beam with the additional support in the center of the 
beam (reference 8), and (c) a cantilever beam with a hinge shown in Figure 2.  The RPG solution (with 
(so / l = 4∆x / l)) for the cantilever beam problem (problem (a)) exhibited convergence with model 
refinement.  These results are consistent with those reported in reference 7, where this problem was 
studied using the conventional MLPG method (with parameters as reported above).  The RPG method 
handled the load discontinuity well and yielded results in overall agreement with the exact solutions.  
For the continuous beam problem (problem (b)), the RPG method yielded very accurate results for both 
the primary and secondary variables and handled the discontinuity caused by the additional support 
well.  For this problem, the MLPG method required a large number of nodes to obtain an accurate 
solution [7], but the RPG method yielded accurate results when the smaller nodal (17-node and 33-
node) models were used.  These results again verify perceived advantages of the RPG method over the 
MLPG method; comparable results can be obtained by the RPG method for comparable computing 
efforts.  For the hinge problem (problem (c)), the RPG and exact solutions for deflection and slope at 
key locations along the length of the beam for three nodal refinements are presented in Table 2.  As the 
hinge at (x = l) cannot admit the moment, there are two separate slopes, θ L and θ R, at the left (x = l –) 
and right (x = l +) segments on either side of the hinge, respectively.  Accurate solutions were obtained 
with the coarse models, and the solutions improved as the models were refined.  The RPG and exact 
solutions for the deflection obtained from the 50-node model for this problem are compared in Figure 3. 
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Figure 2: Cantilever beam with a hinge 

 
Table 2: Comparison of RPG results and exact solutions at several locations along the beam 

 w / wExact (x= l) θ L/θ L
Exact (x= l) θ R/θ R

Exact (x= l) θ /θExact (x= 2l) θ /θExact (x= 3l) 
14-node 0.9769 0.9748 0.9679 0.9774 0.8944 
26-node 0.9814 0.9789 0.9798 0.9817 0.9656 
50-node 0.9880 0.9867 0.9868 0.9882 0.9755 
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Figure 3: Comparison of normalized deflection obtained with the RPG method 

and the exact solution 
 

Concluding Remarks 
  
 A radial basis function implementation of the MLPG method for beam problems was presented.  
The use of radial basis functions (RBF) rather than the traditional moving least squares interpolations 
reduced the computing effort required to solve problems; substantially fewer matrix inversion and 
multiplication operations were required by the radial basis MLPG (RPG) to evaluate the derivatives of 
the shape functions.  When non-compactly supported RBFs were used, the RPG method involved only 
two inversions of large matrices.  The non-compactly supported cubic RBF was found to yield accurate 
solutions for the problems studied; for mixed boundary value problems, the RPG method achieved the 
same accuracy in results as the MLPG method with comparable computing effort.  The RPG method 
yielded very good results for problems with discontinuous and other complex loading conditions. 
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